首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2042篇
  免费   139篇
  国内免费   394篇
化学   1595篇
晶体学   23篇
力学   24篇
综合类   2篇
数学   4篇
物理学   927篇
  2024年   10篇
  2023年   101篇
  2022年   102篇
  2021年   87篇
  2020年   157篇
  2019年   124篇
  2018年   133篇
  2017年   183篇
  2016年   183篇
  2015年   175篇
  2014年   197篇
  2013年   181篇
  2012年   193篇
  2011年   185篇
  2010年   89篇
  2009年   74篇
  2008年   48篇
  2007年   47篇
  2006年   53篇
  2005年   21篇
  2004年   26篇
  2003年   23篇
  2002年   25篇
  2001年   19篇
  2000年   16篇
  1999年   14篇
  1998年   22篇
  1997年   8篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   9篇
  1992年   14篇
  1991年   5篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1979年   1篇
  1971年   1篇
排序方式: 共有2575条查询结果,搜索用时 15 毫秒
971.
《Current Applied Physics》2018,18(5):599-610
We developed sulfonated, reduced graphene oxide (S-RGO) through fuming/concentrated sulfuric acid treatment of graphene oxide (GO) in ambient conditions. It was demonstrated that the optical band gap and electrical conductivity of S-RGO are easily tunable, and depend on the level of reduction and sulfonation of GO. Whereas, reduction and sulfonation were found dependent on SO3 content, acid strength, and gas tightness of the reaction mixture. It's actually the water content of oleum that determines the nature of the final product. The easily adjustable band gap and electrical conductivity suggest that S-RGO can be employed as a potential hole extraction layer (HEL) material for several donor-acceptor systems. For P3HT:PC61BM based inverted polymer solar cells, it was observed that the shape of the J–V curve is tailorable with the choice of HEL. Compared to a 2.75% power conversion efficiency (PCE) attained with PEDOT:PSS, a PCE of 2.80% was achieved with tuned S-RGO. Our results imply that an S-RGO of sufficiently high band gap and conductivity can replace some of the state of the art HEL materials for a host of device applications.  相似文献   
972.
We present our first-principles calculation of the adsorption and diffusion of a carbon adatom on the H-terminated and clean Ge(110) surfaces, which are essential processes in the nucleation and growth of a monolayer graphene on Ge(110) by chemical vapor deposition. On the H-terminated surface, the C adatom spontaneously substitutes H atom(s) to form a monohydride structure (CH) or a dihydride structure (CH2) and makes direct bonds with the substrate Ge atoms. The resulting diffusion barriers of the C adatom are 2.67 and 6.45 eV parallel to and perpendicular to the zigzag Ge chains of the surface, respectively. On the clean surface, the C adatom embeds into the zigzag Ge chain with nearly no barrier, kicking out a Ge atom out of the chain at the same time. The kicked-out Ge atom, instead of the C adatom, becomes a diffusion species with the barrier less than 0.63 eV. The formation of the C composite structures makes the C adatom difficult to diffuse both on the H-terminated and clean Ge(110) surfaces, which suggests that the nucleation and growth of the graphene islands from C seeds is much suppressed. We propose a growth mechanism of graphene monolayer going round the diffusion of the C adatoms on the Ge(110) surfaces.  相似文献   
973.
《Current Applied Physics》2018,18(3):335-339
It is demonstrated experimentally that graphene can form on the surface of an amorphous SiC film by irradiating electron beam (e-beam) at low acceleration voltage. As the electron irradiation fluency increases, the crystallinity and uniformity of graphene improve, which is confirmed by the changes of the measured Raman spectra and secondary electron microscopy images. Due to the shallow penetration depth of e-beam with low acceleration voltage, only the region near the surface of SiC film will be heated by the thermalization of irradiated electrons with multiple scattering processes. The thermalized electrons are expected to weaken the bond strength between Si and C atoms so that the thermal agitation required for triggering the sublimation of Si atoms decreases. With these assistances of irradiated electrons, it is considered that graphene can grow on the surface of SiC film at temperature reduced substantially in comparison with the conventional vacuum annealing process.  相似文献   
974.
Chao Liu  Yong Kon Kwon  Jong Heo   《Journal of Non》2009,355(37-42):1880-1883
Optical properties of PbS quantum dots (QDs) precipitated inside the oxide glass matrix were investigated. Photoluminescence (PL) from the PbS QDs showed peak wavelengths located at 1170–1680 nm with widths of 150–550 nm. Radii of QDs in glasses were 2.3–4.7 nm depending upon the thermal treatment. Peak wavelengths of PL bands shifted as much as 70 nm as the temperatures and excitation irradiances increased. Calculated effective local temperatures indicated that these shifts of PL spectra were associated with local heating induced by the temperatures and laser beam.  相似文献   
975.
《Opto-Electronics Review》2019,27(4):345-347
In this work we propose and analyze the possibility of creating terahertz plasmon-emitting graphene-channel transistor. It is shown that at electric pumping the damping of the terahertz plasmons can give way to their amplification, when the real part of the dynamic conductivity of graphene becomes negative in the terahertz range of frequencies due to the interband population inversion.  相似文献   
976.
While the characteristics of DNA and graphene are well studied, the chemical and physical properties of graphene-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (CT-DNA) hybrid thin films (HTFs) have been rarely discussed due to the limited development of fabrication methodologies. Herein, we developed a simple drop-casting method for constructing DNA and CT-DNA HTFs added with graphene nanopowder (GNP). Additionally, we demonstrated their distinct characteristics, such as their structure, elemental composition, spin states and chemical functional groups, binding interactions, vibration/stretching modes by UV–Vis absorption, PL, and electrical measurements. The EDS spectra of GNP-added DNA HTFs showed C, N, O, Na, and P peaks at characteristic energies. Because of the physical adsorption of GNP on DNA, the peak shifts and suppression of the core spectra of O 1s and P 2p were observed by XPS. The intensity variation of Raman and FTIR bands indicated hybrid formation of GNP in DNA and CT-DNA through adsorption, electrostatic interaction, and π–π stacking. UV–Vis absorption and PL spectra showed the considerable influence of GNP in DNA and CT-DNA HTFs. DNA and CT-DNA HTFs with relatively higher [GNP] showed significant increases of current due to the formation of interconnected networks of GNP in the DNA and CT-DNA HTFs.  相似文献   
977.
In this work, we focused on development of a new techniques by coupling of ultrasound irradiation, cloud point method and magnetite solid phase microextraction for the extraction and preconcentration of Cr(III) ions from aqueous solutions. In order to reduce cost and improve practicability of proposed process a new efficient and regenerable magnetite sorbent (functionalized chitosan grafted-amino graphene oxide (GO) decorated by zinc ferrite nanoparticles (CS-GO-Zn: Fe2O4)) was synthesized through hydrothermal method and then characterized by FT-IR, FE-SEM, EDS and XRD analysis. Effect of initial sample volume and type, volume and concentration of eluent on the ER%Cr(III) were investigated and optimized using one at a time method. Correlation between the main and interaction effects of other operational parameters such as Cr(III) ion concentration, CS-GO-Zn: Fe2O4 mass, sonication time, pH and solution temperature on the ER%Cr(III) were investigated and optimized by central composite design coupled with desirability function approach. The results revealed that there were significant effects for most investigated terms on the ER%Cr(III) and maximum ER% of 88.09% was obtained in desirability value of 1.0. This maximum efficiency was obtained at 0.035 µg/mL Cr(III) ion concentration, 40.16 °C temperature, 0.016 g of CS-GO-Zn: Fe2O4, pH 6.36 and 9.20 min sonication time. In addition, under the optimal conditions the linear range, limit of detection, enrichment factor and relative standard deviation were found to be 0.02–4.4 µg/mL, 0.002 µg/mL, 23.23 and 1.68% respectively. Finally, the method was successfully applied to the separation and preconcentration of Cr(III) ion from tap, river and mineral waters.  相似文献   
978.
We apply the nonequilibrium Green's function method based on density functional theory to investigate the electronic and transport properties of waved zigzag and armchair graphene nanoribbons. Our calculations show that out-of-plane mechanical deformations have a strong influence on the band structures and transport characteristics of graphene nanoribbons. The computed I-V curves demonstrate that the electrical conductance of graphene nanoribbons is significantly affected by deformations. The relationship between the conductance and the compression ratio is found to be sensitive to the type of the nanoribbon. The results of our study indicate the possibility of mechanical control of the electronic and transport properties of graphene nanoribbons.  相似文献   
979.
We derive effective tight-binding model for geometrically optimized graphene quantum dots and based on it we investigate corresponding changes in their optical properties in comparison to ideal structures. We consider hexagonal and triangular dots with zigzag and armchair edges. Using density functional theory methods we show that displacement of lattice sites leads to changes in atomic distances and in consequence modifies their energy spectrum. We derive appropriate model within tight-binding method with edge-modified hopping integrals. Using group theoretical analysis, we determine allowed optical transitions and investigate oscillatory strength between bulk–bulk, bulk–edge and edge–edge transitions. We compare optical joint density of states for ideal and geometry optimized structures. We also investigate an enhanced effect of sites displacement which can be designed in artificial graphene-like nanostructures. A shift of absorption peaks is found for small structures, vanishing with increasing system size.  相似文献   
980.
Many papers have studied the free vibration of graphene sheets. However, all this papers assumed their atomic structure free of any defects. Nonetheless, they actually contain some defects including single vacancy, double vacancy and Stone-Wales defects. This paper, therefore, investigates the free vibration of defective graphene sheets, rather than pristine graphene sheets, via nonlocal elasticity theory. Governing equations are derived using nonlocal elasticity and the first-order shear deformation theory (FSDT). The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defective graphene sheets. Afterwards, these equations solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in the governing equations of motion by nonlocal parameter. The effects of different defect types are inspected for graphene sheets with clamped or simply-supported boundary conditions on all sides. It is shown that the natural frequencies of graphene sheets decrease by introducing defects to the atomic structure. Furthermore, it is found that the number of missing atoms, shapes and distributions of structural defects play a significant role in the vibrational behavior of graphene. The effect of vacancy defect reconstruction is also discussed in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号